Как смещается равновесие в следующих равновесных системах. Химическое равновесие. Химическое равновесие и условия его смещения

Сами по себе обратимые реакции редко представляют собой практический интерес, но в ряде случаев технологическая выгода или рентабельность производства требуют смещения равновесия той или иной обратимой реакции. Для смещения равновесия используют такие технологические приемы, как изменение концентрации реагентов, изменение давления, температуры.

Увеличение концентрации одного из реагирующих веществ (или обоих веществ) смещает равновесие в сторону образования продуктов реакции. Или наоборот, уменьшение концентрации продуктов реакции так же смещает равновесие в сторону их образования. Например для реакции:

H 2 +Cl 2 ↔2HCl;

Увеличение концентрации H 2 или Cl 2 (а так же одновременно H 2 и Cl 2) или уменьшение концентрации НСl приведет к смещению данного равновесия слева направо, а для смещения равновесия справа налево необходимо или увеличить концентрацию НСl или уменьшить концентрации H 2 , Cl 2 или обоих веществ.

Влияние изменения давления на обратимую реакцию рассмотрим на примере реакции:

2N 2 +Н 2 ↔2NНз;

При увеличении давления на данную систему концентрации веществ увеличивается. В данном случае равновесие сместится в сторону меньших объемов. В левой части уравнения два объема азота реагируют с одним объемом водорода. В правой части уравнения имеется два объема аммиака,т.е. количество объемов в правой части равновесной реакции меньше, чем в левой и, следовательно, при увеличении давления, равновесие реакции сместится вправо. Для реакции:

H 2 +Br 2 ↔2HBr

Количество объемов в правой и в левой части уравнения равны (один объем водорода и один объем брома слева и два объема бромистого водорода справа) и увеличение давления не приведет к смещению равновесия ни слева направо, ни справа налево. Если дана равновесная реакция:

Cl 2(r) +2HJ (r) ↔2HCl (r) +J 2(TB)

Индексы (г) соответствуют газообразным веществам, а (тв)- веществу находящемуся в твердой фазе. Изменение давления на данную равновесную систему будет влиять на газообразные вещества (Сl 2 , HJ, НСl), а на вещества, находящиеся в твердом состоянии (J2) или в жидком (H20) давление не оказывает влияние. Поэтому для вышеуказанной реакции увеличение давления сместит равновесие в сторону меньших объемов, т.е. слева направо.

Повышение температуры увеличивает кинетическую энергию всех молекул, участвующих в реакции. Но молекулы вступающие в реакцию (эндотермическую) начинают взаимодействовать между собой быстрее. При повышении температуры равновесие смещается в сторону эндотермичесской реакции, при понижении температуры - в сторону экзометрической реакции. Рассмотрим равновесную реакцию:

Q СаСОз ↔CaO + CO 2 -Q

в которой левая часть соответствует экзотермической реакции, а правая -эндотермической. При нагревании СаСОз происходит разложение этого вещества, следовательно, чем выше температура разложения СаСОз, тем концентрация СаО и СO 2 становится большей, равновесие смещается к эндотермической части уравнения, то есть слева направо, и наоборот, при уменьшении температуры равновесие сместится в сторону экзотермической реакции, т.е. справа налево.

Изменения происходящие в равновесной системе в результате внешних воздействий, определяются принципом Ле Шателье

«Если на систему, находящуюся в химическом равновесии, оказывается внешнее воздействие, то оно приводит к смещению равновесия в сторону, противодействующей этому воздействию».

Введение в равновесную систему катализаторов не приводит к смещению равновесия.

Записаться на урок к Владимиру Павловичу

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

9. Скорость химической реакции. Химическое равновесие

9.2. Химическое равновесие и его смещение

Большинство химических реакций являются обратимыми , т.е. одновременно протекают как в сторону образования продуктов, так и в сторону их распада (слева направо и справа налево).

Примеры уравнений реакций обратимых процессов:

N 2 + 3H 2 ⇄ t ° , p , кат 2NH 3

2SO 2 + O 2 ⇄ t ° , p , кат 2SO 3

H 2 + I 2 ⇄ t ° 2HI

Обратимые реакции характеризуются особым состоянием, которое называется состоянием химического равновесия.

Химическое равновесие - это такое состояние системы, при котором скорости прямой и обратной реакций становятся равными. При движении к химическому равновесию скорость прямой реакции и концентрация реагентов уменьшаются, а обратной и концентрации продуктов - возрастают.

В состоянии химического равновесия в единицу времени образуется столько продукта, сколько и распадается. В результате концентрации веществ, находящихся в состоянии химического равновесия, со временем не изменяются. Однако это вовсе не означает, что равновесные концентрации или массы (объемы) всех веществ обязательно равны между собой (см. рис. 9.8 и 9.9). Химическое равновесие - это динамическое (подвижное ) равновесие , которое может откликаться на внешнее воздействие.

Переход равновесной системы из одного равновесного состояния в другое называется смещением или сдвигом равновесия . На практике говорят о смещении равновесия в сторону продуктов реакции (вправо) или в сторону исходных веществ (влево); прямой называют реакцию, протекающую слева направо, а обратной - справа налево. Состояние равновесия показывают двумя противоположно направленными стрелками: ⇄.

Принцип смещения равновесия был сформулирован французским ученым Ле Шателье (1884): внешнее воздействие на систему, находящуюся в равновесии, приводит к смещению этого равновесия в направлении, ослабляющем эффект внешнего воздействия

Сформулируем основные правила смещения равновесия.

Влияние концентрации : при увеличении концентрации вещества равновесие смещается в сторону его расходования, а при уменьшении - в сторону его образования.

Например, при увеличении концентрации H 2 в обратимой реакции

H 2 (г) + I 2 (г) ⇄ 2HI (г)

скорость прямой реакции, зависящей от концентрации водорода, увеличится. В результате равновесие сместится вправо. При уменьшении концентрации H 2 скорость прямой реакции уменьшится, в результате равновесие процесса сместится влево.

Влияние температуры : при повышении температуры равновесие смещается в сторону эндотермической реакции, а при понижении - в сторону экзотермической реакции.

Важно помнить, что при увеличении температуры возрастает скорость как экзо-, так и эндотермической реакции, но в большее число раз - эндотермической реакции, для которой Е а всегда больше. При уменьшении температуры уменьшается скорость обеих реакций, но опять же в большее число раз - эндотермической. Сказанное удобно проиллюстрировать схемой, на которой значение скорости пропорционально длине стрелок, а равновесие смещается в направлении более длинной стрелки.

Влияние давления : изменение давления влияет на состояние равновесия только в том случае, когда в реакции принимают участие газы, и даже тогда, когда газообразное вещество находится только в одной части химического уравнения. Примеры уравнений реакций:

  • давление влияет на смещение равновесия:

3H 2 (г) + N 2 (г) ⇄ 2NH 3 (г),

CaO (тв) + CO 2 (г) ⇄ CaCO 3 (тв);

  • давление не влияет на смещение равновесия:

Cu (тв) + S (тв) = CuS (тв),

NaOH (р-р) + HCl (р-р) = NaCl (р-р) + H 2 O (ж).

При уменьшении давления равновесие смещается в сторону образования большего химического количества газообразных веществ, а при увеличении - в сторону образования меньшего химического количества газообразных веществ. Если химические количества газов в обеих частях уравнения одинаковые, то давление не оказывает влияния на состояние химического равновесия:

H 2 (г) + Cl 2 (г) = 2HCl (г).

Сказанное легко понять, учитывая, что действие изменения давления аналогично действию изменения концентрации: при увеличении давления в n раз во столько же раз возрастает и концентрация всех веществ, находящихся в равновесии (и наоборот).

Влияние объема реакционной системы : изменение объема реакционной системы связано с изменением давления и оказывает влияние только на состояние равновесия реакций с участием газообразных веществ. Уменьшение объема означает увеличение давления и смещает равновесие в сторону образования меньшего химического количества газов. Увеличение объема системы приводит к уменьшению давления и смещению равновесия в сторону образования большего химического количества газообразных веществ.

Введение в равновесную систему катализатора или изменение его природы не смещает равновесие (не увеличивает выход продукта), так как катализатор в одинаковой степени ускоряет и прямую, и обратную реакции. Это связано с тем, что катализатор в равной мере уменьшает энергию активации прямого и обратного процессов. Тогда зачем же в обратимых процессах используют катализатор? Дело в том, что использование катализатора в обратимых процессах способствует быстрейшему наступлению равновесия, а это увеличивает эффективность промышленного производства.

Конкретные примеры влияния различных факторов на смещение равновесия приведены в табл. 9.1 для реакции синтеза аммиака, протекающей с выделением теплоты. Иными словами, прямая реакция экзотермическая, а обратная - эндотермическая.

Таблица 9.1

Влияние различных факторов на смещение равновесия реакции синтеза аммиака

Фактор воздействия на равновесную систему Направление смещения равновесия реакции 3 Н 2 + N 2 ⇄ t , p , кат 2 NН 3 + Q
Увеличение концентрации водорода, c (H 2) Равновесие смещается вправо, система отвечает уменьшением c (H 2)
Уменьшение концентрации аммиака, c (NH 3)↓ Равновесие смещается вправо, система отвечает увеличением c (NH 3)
Увеличение концентрации аммиака, c (NH 3) Равновесие смещается влево, система отвечает уменьшением c (NH 3)
Уменьшение концентрации азота, c (N 2)↓ Равновесие смещается влево, система отвечает увеличением c (N 2)
Сжатие (уменьшение объема, повышение давления) Равновесие смещается вправо, в сторону уменьшения объема газов
Расширение (увеличение объема, понижение давления) Равновесие смещается влево, в сторону увеличения объема газа
Повышение давления Равновесие смещается вправо, в сторону меньшего объема газа
Понижение давления Равновесие смещается влево, в сторону большего объема газов
Повышение температуры Равновесие смещается влево, в сторону эндотермической реакции
Понижение температуры Равновесие смещается вправо, в сторону экзотермической реакции
Внесение катализатора Равновесие не смещается

Пример 9.3. В состоянии равновесия процесса

2SO 2 (г) + O 2 (г) ⇄ 2SO 3 (г)

концентрации веществ (моль/дм 3) SO 2 , O 2 и SO 3 соответственно равны 0,6, 0,4 и 0,2. Найдите исходные концентрации SO 2 и O 2 (исходная концентрация SO 3 равна нулю).

Решение. В ходе реакции SO 2 и O 2 расходуются, поэтому

c исх (SO 2) = c равн (SO 2) + c израсх (SO 2),

c исх (O 2) = c равн (O 2) + c израсх (O 2).

Значение c израсх находим по c (SO 3):

x = 0,2 моль/дм 3 .

c исх (SO 2) = 0,6 + 0,2 = 0,8 (моль/дм 3).

y = 0,1 моль/дм 3 .

c исх (O 2) = 0,4 + 0,1 = 0,5 (моль/дм 3).

Ответ : 0,8 моль/дм 3 SO 2 ; 0,5 моль/дм 3 O 2 .

При выполнении экзаменационных заданий часто путают влияние различных факторов, с одной стороны, на скорость реакции, а с другой - на смещение химического равновесия.

Для обратимого процесса

при повышении температуры возрастает скорость как прямой, так и обратной реакции; при понижении температуры уменьшается скорость как прямой, так и обратной реакции;

при повышении давления возрастают скорости всех реакций, протекающих с участием газов, - и прямой, и обратной. При понижении давления уменьшается скорость всех реакций, протекающих с участием газов, - и прямой, и обратной;

введение в систему катализатора или его замена на другой катализатор равновесие не смещают.

Пример 9.4. Протекает обратимый процесс, описываемый уравнением

N 2 (г) + 3H 2 (г) ⇄ 2NH 3 (г) + Q

Рассмотрите, какие факторы: 1) увеличивают скорость синтеза реакции аммиака; 2) смещают равновесие вправо:

а) понижение температуры;

б) повышение давления;

в) уменьшение концентрации NH 3 ;

г) использование катализатора;

д) увеличение концентрации N 2 .

Решение. Увеличивают скорость реакции синтеза аммиака факторы б), г) и д) (а также повышение температуры, увеличение концентрации Н 2); смещают равновесие вправо - а), б), в), д).

Ответ : 1) б, г, д; 2) а, б, в, д.

Пример 9.5. Ниже приведена энергетическая схема обратимой реакции

Укажите все справедливые утверждения:

а) обратная реакция протекает быстрее, чем прямая;

б) с повышением температуры скорость обратной реакции возрастает в большее число раз, чем прямой реакции;

в) прямая реакция протекает с поглощением теплоты;

г) величина температурного коэффициента γ больше для обратной реакции.

Решение.

а) Утверждение верное, так как Е а обр = 500 − 300 = 200 (кДж) меньше Е а пр = 500 − 200 = 300 (кДж).

б) Утверждение неверное, в большее число раз возрастает скорость прямой реакции, для которой Е а больше.

в) Утверждение верное, Q пр = 200 − 300 = −100 (кДж).

г) Утверждение неверное, γ больше для прямой реакции, в случае которой больше Е а.

Ответ : а), в).

В целях более полного превращения исходных веществ в продукты, возникает необходимость смещения равновесия в сторону прямой реакции. Этого можно достигнуть путем изменения условийпротекания реакции.Изменяя условия (концентрацию, температуру, а для газов ещё и давление), можно перевести систему из одного равновесного состояния в другое, отвечающее новым условиям.

Химическое равновесие смещается потому, что изменение условий неодинаково влияет на скорости прямой и обратной реакций. Через некоторое время эти скорости вновь сравниваются, и наступает состояние равновесия, отвечающее новым условиям. Изменение равновесных концентраций реагирующих веществ, вызванное изменением какого-либо условия, называется смещением , или сдвигом равновесия .

Если при изменении условий увеличилась концентрация образующихся веществ, т.е. веществ, формулы которых находятся в правой части уравнения, то говорят о смещении равновесия вправо. Если изменение условий влечёт за собой увеличение концентраций исходных веществ, формулы которых стоят в левой части уравнения, то это рассматривают как смещение равновесия влево.

Смещение химического равновесия с изменением условий подчиняется правилу, известному под названием принципа Ле Шателье - Брауна :

Если на химическую реакцию, которая находится в состоянии химического равновесия, произвести какое-либо воздействие (изменить температуру, давление, концентрации веществ), то увеличится скорость той реакции (прямой или обратной), протекание которой приведет к ослаблению данного воздействия.

Следует отметить, что принцип Ле Шателье-Брауна приложим не только к химическим реакциям, но и ко многим процессам, не имеющим чисто химического характера: испарение, конденсация, плавление, кристаллизация и др.

Влияние изменения температуры на смещение химического равновесия. Определяется знаком теплового эффекта. Его можно найти экспериментально или рассчитать на основе закона Гесса. Чем он больше, тем сильнее влияние температуры. Если же он близок к нулю, то изменение температуры практически не влияет на равновесие.

Согласно принципу Ле Шателье-Брауна при повышении температуры происходит смещение равновесия в сторону эндотермической реакции (т.е. её скорость увеличивается). При понижении температуры равновесие смещается в направлении экзотермической реакции, идущей с выделением тепла (т.е. её скорость увеличивается).

Н-р, в случае процессаN 2 O 4 2NO 2 – 56,84 кДж

прямая реакция протекает с поглощением тепла и является эндотермической; обратная реакция протекает с выделением тепла и является экзотермической. Повышение температуры приведет к увеличению скорости эндотермической реакции и равновесие сместится вправо, т.е. разложение N 2 O 4 будет ускоряться (Vпрям., Vобр.↓). Понижение температуры приведет к увеличению скорости экзотермической реакции и равновесие сместится влево, т.е. будет ускоряться образование N 2 O 4 (Vпрям.↓, Vобр.).

Влияние изменения концентрации (парциального давления) на смещение химического равновесия. Введение в равновесную систему (реакцию) дополнительных количеств любого из реагирующих веществ ускоряет ту реакцию, при которой оно расходуется. Таким образом, увеличение концентрации исходных веществ смещает равновесие в сторону образования продуктов реакции. Увеличение концентрации продуктов реакции смещает равновесие в сторону образования исходных веществ. Степень смещения равновесия при данном количестве реагента находится в зависимости от стехиометрических коэффициентов. В случае равновесной системы

СО + Н 2 О пар СО 2 + Н 2

равновесие может быть смещено вправо увеличением концентрации СО или Н 2 О (водяного пара); уменьшение концентрации СО 2 или Н 2 также приводит к смещению равновесия вправо. При увеличении концентрации СО 2 или Н 2 , а также при уменьшении концентрации СО или Н 2 О равновесие смещается влево. Для гетерогенного равновесия изменение концентраций твердых фаз не влияет на сдвиг равновесия .

Влияние изменения давления на смещение химического равновесия. В соответствии с принципом Ле Шателье-Брауна увеличение давления смещает равновесие в сторону той реакции, которая приводит к уменьшению общего числа молекул в газовой смеси , а, следовательно, к уменьшению давления в системе. Наоборот, при уменьшении давления равновесие смещается в сторону реакции, сопровождающейся увеличением общего числа молекул газа, что влечет за собой увеличение давления в системе. Так, уравнение процесса

3Н 2 + N 2 2NН 3

показывает, что из одной молекулы азота и трех молекул водорода образуются две молекулы аммиака. Из-за уменьшения числа молекул повышение давления вызывает смещение равновесия реакции вправо – в сторону образования аммиака, что сопровождается понижением давления в системе. Наоборот, понижение давления в системе приводит к смещению равновесия влево – в сторону разложения аммиака, что влечёт за собой повышение давления в системе.

В тех случаях, когда в результате реакции число молекул газообразных веществ остаётся постоянным, при изменении давления одинаково изменяются скорости прямой и обратной реакций, и поэтому равновесие не смещается. К таким реакциям относятся, н-р:

СО + Н 2 О пар СО 2 + Н 2 N 2 + O 2 2NO

Принцип Ле Шателье-Брауна имеет большое практическое значение. Он даёт возможность находить такие условия, которые обеспечивают максимальный выход желаемого вещества. Технология производства важнейших химических продуктов основана на применении принципа Ле Шателье-Брауна и на расчетах, вытекающих из закона действующих масс.

Пример 1. Какие меры можно предпринять для повышения выхода продукта реакции N 2 + 3H 2  2NH 3 , Н= -92,4
.

Р е ш е н и е

По условию задачи требуется сместить равновесие в сторону прямой реакции, поэтому следует:

    увеличивать концентрации азота и водорода, то есть постоянно водить в систему свежие порции реагентов;

    уменьшать концентрацию аммиака, т.е. выводить его из реакционного пространства;

    понижать температуру (однако так, чтобы можно было бы активировать N 2), так как прямая реакция является экзотермической;

    увеличивать давление (уменьшать объем), потому что в прямом направлении происходит уменьшение числа моль газообразных веществ (из 4 моль газа образуется 2 моль газа).

Пример 2. Как изменится равновесная концентрация кислорода, если в системе 2С тв + О 2  2СО при постоянной температуре увеличить концентрацию СО в 3 раза?

Р е ш е н и е

Запишем выражение для константы равновесия данного гетерогенного процесса
. По условию задачи
. Поскольку константа равновесия не зависит от концентраций реагентов, то должно выполняться равенство

или
.

Таким образом, при повышении концентрации СО в 3 раза равновесная концентрация кислорода должна увеличиться в 9 раз.

Условие химического равновесия . Для любого химического процесса при некоторой температуре энтальпийный и энтропийный факторы уравниваются. Две противоположные тенденции уравновешивают друг друга, т. е. DН= TDS. В этом случае соблюдается уравнение:

DrG° = DrH ° - TDrS ° = 0,

которое является термодинамическим условием химического равновесия.

Химическое равновесие имеет динамический характер. Когда скорость реакции в прямом направлении равна скорости реакции в обратном направлении, наступает состояние химического равновесия. В условиях химического равновесия концентрации исходных веществ и продуктов реакции не изменяются во времени называются равновесными концентрациями веществ. В дальнейшем равновесные концентрации будем обозначать символом вещества в квадратных скобках. Например, равновесные концентрации водорода и аммиака будут обозначаться [Н2] и .

Константа химического равновесия . При равновесии химической реакции:

энергия Гиббса равна:

(3.12)

где [L], [M], [D], [В] - равновесные концентрации соответствующих веществ;

l, m, d, b - показатели степени, равные стехиометрическим коэффициентам.

Отношение получило название константы химического равновесия (Кр):

(3.13)

Это уравнение является вариантом математического выражения закона действующих масс. Для обратимых химических реакций закон действующих масс может быть сформулирован в следующем виде: отношение произведения равновесных концентраций продуктов реакции в степенях, равных стехиометрическим коэффициентам, к произведению равновесных концентраций исходных веществ в степенях, равных стехиометрическим коэффициентам, при Т = const, является величиной постоянной.

Например, для реакции синтеза аммиака:

N2 + ЗН2 = 2NH3; .

Чем больше константа равновесия, тем «глубже» протекает реакция, т. е. тем больше выход продуктов реакции.

Для гетерогенных химических реакций в выражение константы равновесия, как и в уравнение закона действующих масс входят концентрации только тех веществ, которые находятся газовой фазе или в растворе. Концентрация вещества, находящегося в твердой фазе, обычно постоянна.

Катализатор не влияет на значение константы равновесия поскольку он одинаково снижает энергию активации прямой и обратной реакции и поэтому одинаково изменяет их скорости Катализатор лишь ускоряет достижение химического равновесия, но не влияет на количественный выход продуктов реакции.

Пример 11 . Для реакции синтеза аммиака

N2(r) + 3H2(r)«2NH3(r)

равновесные концентрации N2, Н2 и NH3 равны соответственно 3 моль/дм3, 2 моль/дм3 и 0,3 моль/дм3. Найдите исходные концентрации N2 и Н2 и константу равновесия реакции.

Решение. Пусть объем системы равен 1 дм" и в холе реакции q изменяется. Обозначим равновесные концентрации как , , , исходные - как с(Н2), c(N2), концентрации и количество прореагировавшего вещества - с(Н2)прор c(N2)прор. n(N2)прор и n(Н2)прор.

с(Н2) = [Н2] + с(H2)поор;

c(N2) = + c(N1)w.

Находим количество прореагировавшего азота n(N2)прор и вoдopoд n(Н2)прор. по количеству образовавшегося аммиака. Составляем пропорции согласно уравнениям реакций: i

на образование 2 моль NH3 расходуется 1 моль N2, i

на образование 0,3 моль NH3 расходуется х моль N2.

Отсюда х = 0,15 моль - количество прореагировавшего азота n(N2)прор=0,15 моль.

Находим концентрацию прореагировавшего N2:

c(N2) = = 0,15 моль/дм3 I

Аналогично определяем количество прореагировавшего водород на образование 2 моль NH3 расходуется 3 моль Н2, на образование 0,3 моль NH3 расходуется y моль Н2.

Отсюда у = 0,45 моль, л(Н2)прор = 0,45 моль. Находим концентрацию прореагировавшего Н2:

с(Н2) = = 0,45 моль/дм3.

Следовательно, исходные концентрации азота и водорода равны:

с(Н2) = [Н2] + c(H2)прор = 3 + 0,15 = 3,15 моль/лм3;

c(N2) = + c(N2)прор = 2 + 0,45 = 2,45 моль/дм3.

Находим константу равновесия, используя выражение (3.13):

Ответ: с(Н2) = 3,15 моль; c(N2) = 2,45 моль; Кр = 3,75×10 -3. Подставляя константу равновесия в уравнение (3.12), получаем:

При температуре 298 К

DrG0298 = -5,71×lgKp298 = -2,48×lnKp 298.

Уравнение (3.14) можно записать в виде:

(3.15)

Рассчитав величину DrG0 химической реакции, можно определить константу химического равновесия. Следует отметить, то DrG0 < 0 только в случае, когда lgKp > 0, т. е. Кp > 1; DrG0 > 0, когда lgKp < 0, т. е. Кp < 1. При DrG0 < 0 равновесие смещено в направлении прямой реакции и выход продуктов реакции сравнительно велик, при DrG0 > 0 равновесие смещено в сторону обратной реакции.

Случай, когда Кр = 1 соответствует минимуму энергии Гиббса, т. е. DrG0 = 0, тогда из выражения DrG0 = DrН0 - ТDrS0 можно определить температуру, при которой Кp= 1 (уравнение (2.18)):

Принцип Ле Шателье . При внешнем воздействии на систему происходит смещение химического равновесия, т. е. изменяются равновесные концентрации исходных веществ и продуктов реакции.

Характер смещения равновесия под влиянием внешних воз действий можно прогнозировать, применяя принцип Ле Шателье: если на систему, находящуюся в равновесии, оказывается внешнее воздействие, то в результате протекающих в ней процессов равновесие смещается в таком направлении, которое ослабляет внешнее воздействие.

Химическое равновесие может смещаться при изменении температуры, давления или концентрации:

1)при увеличении температуры равновесие смещается в сторону эндотермического процесса, при понижении температуры - в сторону экзотермического процесса;

2) при увеличении давления (уменьшении объема системы равновесие смещается в гу сторону, где содержится меньшее количество молекул газообразных веществ; при понижении давления (увеличении объема системы) - в сторону большего количества молекул. Если количество молекул газов в обеих часта уравнения одинаково, то изменение давления не влияет на смещение равновесия;

3) при увеличении концентрации реагентов равновесие смещается в сторону прямой реакции, при увеличении концентрации продуктов - в сторону обратной реакции.

Химические реакции бывают обратимые и необратимые.

т.е. если некоторая реакция A + B = C + D необратима, это значит, что обратная реакция C + D = A + B не протекает.

т.е., например, если некая реакция A + B = C + D обратима, это значит, что одновременно протекает как реакция A + B → C + D (прямая), так и реакция С + D → A + B (обратная).

По сути, т.к. протекают как прямая, так и обратная реакции, реагентами (исходными веществами) в случае обратимых реакций могут быть названы как вещества левой части уравнения, так и вещества правой части уравнения. То же самое касается и продуктов.

Для любой обратимой реакции возможна ситуация, когда скорость прямой и обратной реакций равны. Такое состояние называют состоянием равновесия .

В состоянии равновесия концентрации как всех реагентов, так и всех продуктов неизменны. Концентрации продуктов и реагентов в состоянии равновесия называют равновесными концентрациями .

Смещение химического равновесия под действием различных факторов

Вследствие таких внешних воздействий на систему, как изменение температуры, давления или концентрации исходных веществ или продуктов, равновесие системы может быть нарушено. Однако после прекращения этого внешнего воздействия система через некоторое время перейдет в новое состояние равновесия. Такой переход системы из одного равновесного состояния в другое равновесное состояние называют смещением (сдвигом) химического равновесия .

Для того чтобы уметь определять, каким образом сдвигается химическое равновесие при том или ином типе воздействия, удобно пользоваться принципом Ле Шателье:

Если на систему в состоянии равновесия оказать какое-либо внешнее воздействие, то направление смещения химического равновесия будет совпадать с направлением той реакции, которая ослабляет эффект от оказанного воздействия.

Влияние температуры на состояние равновесия

При изменении температуры равновесие любой химической реакции смещается. Связано это с тем, что любая реакция имеет тепловой эффект. При этом тепловые эффекты прямой и обратной реакции всегда прямо противоположны. Т.е. если прямая реакция является экзотермической и протекает с тепловым эффектом, равным +Q, то обратная реакция всегда эндотермична и имеет тепловой эффект, равный –Q.

Таким образом, в соответствии с принципом Ле Шателье, если мы повысим температуру некоторой системы, находящейся в состоянии равновесия, то равновесие сместится в сторону той реакции, при протекании которой температура понижается, т.е. в сторону эндотермической реакции. И аналогично, в случае, если мы понизим температуру системы в состоянии равновесия, равновесие сместится в сторону той реакции, в результате протекания которой температура будет повышаться, т.е. в сторону экзотермической реакции.

Например, рассмотрим следующую обратимую реакцию и укажем, куда сместится ее равновесие при понижении температуры:

Как видно из уравнения выше, прямая реакция является экзотермической, т.е. в результате ее протекания выделяется тепло. Следовательно, обратная реакция будет эндотермической, то есть протекает с поглощением тепла. По условию температуру понижают, следовательно, смещение равновесия будет происходить вправо, т.е. в сторону прямой реакции.

Влияние концентрации на химическое равновесие

Повышение концентрации реагентов в соответствии с принципом Ле Шателье должно приводить к смещению равновесия в сторону той реакции, в результате которой реагенты расходуются, т.е. в сторону прямой реакции.

И наоборот, если концентрацию реагентов понижают, то равновесие будет смещаться в сторону той реакции, в результате которой реагенты образуются, т.е. сторону обратной реакции (←).

Аналогичным образом влияет и изменение концентрации продуктов реакции. Если повысить концентрацию продуктов, равновесие будет смещаться в сторону той реакции, в результате которой продукты расходуются, т.е. в сторону обратной реакции (←). Если же концентрацию продуктов, наоборот, понизить, то равновесие сместится в сторону прямой реакции (→), для того чтобы концентрация продуктов возросла.

Влияние давления на химическое равновесие

В отличие от температуры и концентрации, изменение давления оказывает влияние на состояние равновесия не каждой реакции. Для того чтобы изменение давления приводило к смещению химического равновесия, суммы коэффициентов перед газообразными веществами в левой и в правой частях уравнения должны быть разными.

Т.е. из двух реакций:

изменение давления способно повлиять на состояние равновесия только в случае второй реакции. Поскольку сумма коэффициентов перед формулами газообразных веществ в случае первого уравнения слева и справа одинаковая (равна 2), а в случае второго уравнения – различна (4 слева и 2 справа).

Отсюда, в частности, следует, что если среди и реагентов, и продуктов отсутствуют газообразные вещества, то изменение давления никак не повлияет на текущее состояние равновесия. Например, давление никак не повлияет на состояние равновесия реакции:

Если же слева и справа количество газообразных веществ различается, то повышение давления будет приводить к смещению равновесия в сторону той реакции, при протекании которой объем газов уменьшается, а понижение давления – в сторону той реакции, в результате которой объем газов увеличивается.

Влияние катализатора на химическое равновесие

Поскольку катализатор в равной мере ускоряет как прямую, так и обратную реакции, то его наличие или отсутствие никак не влияет на состояние равновесия.

Единственное, на что может повлиять катализатор, — это на скорость перехода системы из неравновесного состояния в равновесное.

Воздействие всех указанных выше факторов на химическое равновесие сведено ниже в таблицу-шпаргалку, в которую поначалу можно подглядывать при выполнении заданий на равновесия . Однако же пользоваться на экзамене ей не будет возможности, поэтому после разбора нескольких примеров с ее помощью, ее следует выучить и тренироваться решать задания на равновесия, уже не подглядывая в нее:

Обозначения: T – температура, p – давление, с – концентрация, — повышение, ↓ — понижение

Катализатор

T

Т — равновесие смещается в сторону эндотермической реакции
↓Т — равновесие смещается в сторону экзотермической реакции

p

p — равновесие смещается в сторону реакции с меньшей суммой коэффициентов перед газообразными веществами
↓p — равновесие смещается в сторону реакции с большей суммой коэффициентов перед газообразными веществами

c

c (реагента) – равновесие смещается в сторону прямой реакции (вправо)
↓c (реагента) – равновесие смещается в сторону обратной реакции (влево)
c (продукта) – равновесие смещается в сторону обратной реакции (влево)
↓c (продукта) – равновесие смещается в сторону прямой реакции (вправо)
На равновесие не влияет!!!
Поделитесь с друзьями или сохраните для себя:

Загрузка...